Aula 2: Conversão entre Bases, Aritmética Circuitos Digitais

Rodrigo Hausen

CMCC – UFABC

25 de janeiro de 2013

http://compscinet.org/circuitos

números positivos menores do que 1: $(0,a_{-1}a_{-2}...)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

números positivos menores do que 1: $(0,a_{-1}a_{-2}\dots)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

números positivos menores do que 1: $(0,a_{-1}a_{-2}...)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

$$(0.8125)_{10} \times 2 = (\boxed{1},6250)_{10} \qquad a_{-1} = 1$$

números positivos menores do que 1: $(0,a_{-1}a_{-2}\dots)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

$$(0.8125)_{10} \times 2 = (1.6250)_{10}$$
 $a_{-1} = 1$
 $(0.6250)_{10} \times 2 = (1.25)_{10}$ $a_{-2} = 1$

números positivos menores do que 1: $(0,a_{-1}a_{-2}\dots)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

$$(0.8125)_{10} \times 2 = (\boxed{1}.6250)_{10}$$
 $a_{-1} = 1$
 $(0.6250)_{10} \times 2 = (\boxed{1}.25)_{10}$ $a_{-2} = 1$
 $(0.25)_{10} \times 2 = (\boxed{0}.50)_{10}$ $a_{-3} = 0$

números positivos menores do que 1: $(0,a_{-1}a_{-2}\dots)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

$$(0.8125)_{10} \times 2 = (1.6250)_{10}$$
 $a_{-1} = 1$
 $(0.6250)_{10} \times 2 = (1.25)_{10}$ $a_{-2} = 1$
 $(0.25)_{10} \times 2 = (0.50)_{10}$ $a_{-3} = 0$
 $(0.50)_{10} \times 2 = (1.0)_{10}$ $a_{-4} = 1$

números positivos menores do que 1: $(0,a_{-1}a_{-2}\dots)_{10}$ para base 2 Ex1.: $(0,8125)_{10}$ p/ base 2

$$(0.8125)_{10} = (0.1101)_2$$

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

$$(0,1)_{10} = (0,0\overline{0011}...)_2$$

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

$$(0,\!1)_{10}=(0,\!0\overline{0011}\ldots)_2$$

CUIDADO! Nem todo número fracionário que possui representação finita na base 10, também possui representação finita em outras bases.

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

$$(0,\!1)_{10}=(0,\!0\overline{0011}\ldots)_2$$

CUIDADO! Nem todo número fracionário que possui representação finita na base 10, também possui representação finita em outras bases.

Ex3.: $(6,22)_{10}$ para base 2

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

$$(0,1)_{10} = (0,0\overline{0011}...)_2$$

CUIDADO! Nem todo número fracionário que possui representação finita na base 10, também possui representação finita em outras bases.

Ex3.: $(6,22)_{10}$ para base 2 110,001110000101000111101...

Ex3.: $(6,22)_{10}$ para base 16

Ex2.: $(0,1)_{10}$ para base 2 (na lousa)

$$(0,1)_{10} = (0,0\overline{0011}...)_2$$

CUIDADO! Nem todo número fracionário que possui representação finita na base 10, também possui representação finita em outras bases.

Ex3.: $(6,22)_{10}$ para base 2 110,001110000101000111101...

Ex3.: $(6,22)_{10}$ para base 16 $6,3\overline{851}EB$...

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = ($)₂

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Е	Base 16	Base 2
0	0000		8	1000
1	0001		9	1001
2	0010		A	1010
3	0011		В	1011
4	0100		С	1100
5	0101		D	1101
6	0110		E	1110
7	0111		F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = (1100)_2$

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2		Base 16	Base 2
0	0000		8	1000
1	0001		9	1001
2	0010		A	1010
3	0011		В	1011
4	0100	_	С	1100
5	0101	_	D	1101
6	0110		E	1110
7	0111		F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = (11000101,$)₂

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2		Base 16	Base 2
0	0000		8	1000
1	0001		9	1001
2	0010		A	1010
3	0011		В	1011
4	0100	_	С	1100
5	0101	_	D	1101
6	0110		E	1110
7	0111		F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = (11000101,0011)_2$

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = (11000101,001111110)_2$

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

- Ex1.: $(C5,3E)_{16} = (11000101,001111110)_2$
- Ex2.: $(10010,1001010)_2 = ()_{16}$

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

- Ex1.: $(C5,3E)_{16} = (11000101,001111110)_2$
- Ex2.: $(00010010,10010100)_2 = ($ $)_{16}$

 Tabela de conversão entre números de um dígito em base 16 para números de 4 dígitos na base 2

Base 16	Base 2	Base 16	Base 2
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Todos os inteiros de até 4 dígitos em base 2 correspondem a números de exatamente 1 dígito em base 16

• Ex1.: $(C5,3E)_{16} = (11000101,001111110)_2$

• Ex2.: $(00010010,10010100)_2 = (12,94)_{16}$

Conversão base 16 para base 2 e vice-versa

• **De 16 para 2**: substitua cada dígito na base 16 pelos 4 dígitos correspondentes na base 2

$$(C5,3E)_{16} = (11000101,001111110)_2$$

Conversão base 16 para base 2 e vice-versa

 De 16 para 2: substitua cada dígito na base 16 pelos 4 dígitos correspondentes na base 2

$$(C5,3E)_{16} = (11000101,001111110)_2$$

 De 2 para 16: agrupe de 4 em 4 os dígitos a partir da vírgula (da vírgula para os extremos). Considere como zeros os dígitos que estejam faltando para completar algum grupo.

$$(111110,1001101)_2 = (3E,9A)_{16}$$

Conversão base 16 para base 2 e vice-versa

 De 16 para 2: substitua cada dígito na base 16 pelos 4 dígitos correspondentes na base 2

$$(C5,3E)_{16} = (11000101,001111110)_2$$

• **De 2 para 16**: agrupe de 4 em 4 os dígitos a partir da vírgula (da vírgula para os extremos). Considere como zeros os dígitos que estejam faltando para completar algum grupo.

$$(111110,1001101)_2 = (3E,9A)_{16}$$

• Também é fácil converter da base 2 para a base 8 e vice-versa. $(73,44)_8=(111011,100100)_2$ e $(11001011101,1101101)_2=(3135,664)_8$ (note que todos os inteiros com até 3 algarismos na base 2 podem ser representados por apenas 1 algarismo na base 8)

 Por razões que veremos mais à frente, a base 2 é a base mais usada em computação hoje em dia.

- Por razões que veremos mais à frente, a base 2 é a base mais usada em computação hoje em dia.
- Note que um número inteiro costuma ter menos dígitos quando é representado numa base maior.

$$(11111110)_2 = (126)_{10} = (7E)_{16}$$

- Por razões que veremos mais à frente, a base 2 é a base mais usada em computação hoje em dia.
- Note que um número inteiro costuma ter menos dígitos quando é representado numa base maior.

$$(1111110)_2 = (126)_{10} = (7E)_{16}$$

 Como é muito fácil converter da base 2 para as bases 8 e 16 e vice-versa, estas bases costumam também ser muito usadas.

- Por razões que veremos mais à frente, a base 2 é a base mais usada em computação hoje em dia.
- Note que um número inteiro costuma ter menos dígitos quando é representado numa base maior.

$$(11111110)_2 = (126)_{10} = (7E)_{16}$$

 Como é muito fácil converter da base 2 para as bases 8 e 16 e vice-versa, estas bases costumam também ser muito usadas.

Para casa:

- **1** um número inteiro com exatamente *n* dígitos quando representado na base 2 terá, no mínimo, quantos dígitos em sua representação decimal?
- e no máximo?
- dado um número inteiro cuja representação decimal possui N dígitos, quantos dígitos serão necessários, no máximo, para representá-lo na base 2?

Nomes para as bases mais usadas:

- Base 2 = base binária
- Base 8 = base octal
- Base 10 = base decimal
- Base 16 = base hexadecimal

Além dessas, há outras bases menos usadas em computação, tais como a base 64, que não possuem nomes especiais.

ARITMÉTICA

Perguntas que responderemos hoje:

- Por que quando somamos dois números na base 10, podemos colocar "um sobre o outro" e somar os dígitos individualmente, tomando cuidado com o "vai um"?
- Qual o significado do "vai um"?
- Será que o mesmo procedimento de soma também funciona em outras bases?

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{ccc} 111 & \leftarrow \text{``vai-uns''} \\ & 397 \\ \hline & 654 \\ \hline & 1051 \end{array} +$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
111 & \leftarrow \text{"vai-uns"} \\
397 \\
\underline{654} & + \\
\hline
1051 \\
\end{array}$$

$$397 = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl} & 111 & \leftarrow \text{``vai-uns''} \\ & 397 \\ & \underline{654} & + \\ \hline & 1051 \end{array}$$

$$397 & = & 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\ + 654 & = & 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \end{array}$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
111 & \leftarrow \text{"vai-uns"} \\
& 397 \\
& \underline{654} + \\
\hline
& 1051}
\end{array}$$

$$397 & = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\
& + 654 & = 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\
& 397 + 654 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
111 & \leftarrow \text{"vai-uns"} \\
& 397 \\
& \underline{654} \\
1051
\end{array}$$

$$397 & = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\
& + 654 & = 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\
397 + 654 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0 \\
& = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (11) \cdot 10^0
\end{array}$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
111 & \leftarrow \text{"vai-uns"} \\
& 397 \\
& \underline{654} \\
1051
\end{array}$$

$$397 & = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\
& + 654 & = 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\
397 + 654 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0 \\
& = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (11) \cdot 10^0 \\
& = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + 1 \cdot 10^1 + 1 \cdot 10^0
\end{array}$$

vai um

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl} 111 & \leftarrow \text{``vai-uns''} \\ & 397 \\ & \underline{654} \\ 1051 \end{array} + \\ 397 & = & 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\ + 654 & = & 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\ 397 + 654 & = & (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0 \\ & = & (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (11) \cdot 10^0 \\ & = & (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + \underbrace{1 \cdot 10^1}_{\text{vai um}} + 1 \cdot 10^0 \\ & = & (3+6) \cdot 10^2 + (9+5+1) \cdot 10^1 + 1 \cdot 10^0 \end{array}$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
 & 111 & \leftarrow \text{"vai-uns"} \\
 & 397 \\
 & \underline{654} \\
 & 1051
\end{array}$$

$$397 & = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\
 & + 654 & = 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\
397 + 654 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (11) \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + \underbrace{1 \cdot 10^1}_{\text{vai um}} + 1 \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5+1) \cdot 10^1 + 1 \cdot 10^0 \\
 & \vdots & \vdots \\
 & = 1 \cdot 10^3 + 0 \cdot 10^2 + 5 \cdot 10^1 + 1 \cdot 10^0
\end{array}$$

Ex.:
$$397 + 654 = 1051$$

$$\begin{array}{rcl}
 & 111 & \leftarrow \text{"vai-uns"} \\
 & 397 \\
 & \underline{654} \\
 & 1051
\end{array}$$

$$397 & = 3 \cdot 10^2 + 9 \cdot 10^1 + 7 \cdot 10^0 \\
 & + 654 & = 6 \cdot 10^2 + 5 \cdot 10^1 + 4 \cdot 10^0 \\
397 + 654 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (7+4) \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + (11) \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5) \cdot 10^1 + \underbrace{1 \cdot 10^1}_{\text{vai um}} + 1 \cdot 10^0 \\
 & = (3+6) \cdot 10^2 + (9+5+1) \cdot 10^1 + 1 \cdot 10^0 \\
 & \vdots & \vdots \\
 & 1051 & = 1 \cdot 10^3 + 0 \cdot 10^2 + 5 \cdot 10^1 + 1 \cdot 10^0
\end{array}$$

```
Entrada: números com n algarismos A = a_{n-1}a_{n-2} \dots a_1a_0 e
B = b_{n-1}b_{n-2} \dots b_1b_0
Saída: número C = c_n c_{n-1} c_{n-2} \dots c_1 c_0 com n+1 algarismos que
representa a soma A + B.
VaiUm \leftarrow 0
PARA i = 0...n-1
  SE VaiUm = 0
    c_i \leftarrow Tabuada[a_i][b_i]
    VaiUm \leftarrow TemVaiUm[a_i][b_i]
  SENÃO
    c_i \leftarrow TabuadaComVaiUm[a_i][b_i]
    VaiUm \leftarrow VaiUmComVemUm[a_i][b_i]
c_n \leftarrow VaiUm
```

Entrada: números com *n* algarismos $A = a_{n-1}a_{n-2} \dots a_1 a_0$ e $B = b_{n-1}b_{n-2} \dots b_1b_0$

Saída: número $C = c_n c_{n-1} c_{n-2} \dots c_1 c_0$ com n+1 algarismos que representa a soma A + B.

```
VaiUm \leftarrow 0
PARA i = 0...n-1
                                                                                       Tabuada =
                                                                                                                                Matriz[10][10]

    0
    1
    2
    3
    4
    5
    6
    7
    8
    9

    0
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9

    1
    1
    2
    3
    4
    5
    6
    7
    8
    9
    0

    2
    2
    3
    4
    5
    6
    7
    8
    9
    0
    1

    3
    3
    4
    5
    6
    7
    8
    9
    0
    1
    2

    SE VaiUm = 0
        c_i \leftarrow Tabuada[a_i][b_i]
        VaiUm \leftarrow TemVaiUm[a_i][b_i]
    SENÃO
                                                                                         c_i \leftarrow TabuadaComVaiUm[a_i][b_i]
        VaiUm \leftarrow VaiUmComVemUm[a_i][b_i]
c_n \leftarrow VaiUm
```

```
Entrada: números com n algarismos A = a_{n-1}a_{n-2} \dots a_1a_0 e B = b_{n-1}b_{n-2} \dots b_1b_0
Saída: número C = c_nc_{n-1}c_{n-2} \dots c_1c_0 com n+1 algarismos que representa a soma A+B.
```

```
\begin{tabular}{lll} VaiUm &\leftarrow 0 \\ PARA & $i=0...n-1$ \\ SE & VaiUm &= 0 \\ & c_i &\leftarrow Tabuada[a_i][b_i] \\ & VaiUm &\leftarrow TemVaiUm[a_i][b_i] \\ SENÃO \\ & c_i &\leftarrow TabuadaComVaiUm[a_i][b_i] \\ & VaiUm &\leftarrow VaiUmComVemUm[a_i][b_i] \\ & c_n &\leftarrow VaiUm \\ \end{tabular}
```

Tab	uad	aCo	mV	'aiU	m	=	Ма	triz	[10]	[10]
	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0	1
2	3	4	5	6	7	8	9	0	1	2
3	4	5	6	7	8	9	7 8 9 0	1	2	3
	1 :	:	:	÷	:	:	÷			
9	0	1	2	3	4	5	6	7	8	9

(D) (A) (E) (E) (P) (P)

Entrada: números com *n* algarismos $A = a_{n-1}a_{n-2} \dots a_1 a_0$ e $B = b_{n-1}b_{n-2} \dots b_1b_0$

Saída: número $C = c_n c_{n-1} c_{n-2} \dots c_1 c_0$ com n+1 algarismos que representa a soma A + B.

 $VaiUm \leftarrow 0$ PARA i = 0...n-1TemVaiUm =Matriz[10][10]
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1

 2
 0
 0
 0
 0
 0
 0
 0
 1
 1

 3
 0
 0
 0
 0
 0
 0
 1
 1
 1
 SE VaiUm = 0 $c_i \leftarrow Tabuada[a_i][b_i]$ $VaiUm \leftarrow TemVaiUm[a_i][b_i]$ SENÃO
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :</t $c_i \leftarrow TabuadaComVaiUm[a_i][b_i]$ $VaiUm \leftarrow VaiUmComVemUm[a_i][b_i]$ $c_n \leftarrow VaiUm$

```
Entrada: números com n algarismos A = a_{n-1}a_{n-2} \dots a_1a_0 e B = b_{n-1}b_{n-2} \dots b_1b_0
```

Saída: número $C = c_n c_{n-1} c_{n-2} \dots c_1 c_0$ com n+1 algarismos que representa a soma A+B.

• Como somar números em outra base, p. ex., 2?

Ex.:
$$(101011)_2 + (100111)_2 = (1010010)_2$$
, ou seja, $(43)_{10} + (39)_{10} = (82)_{10}$
$$\frac{1 \quad 1111}{101011} \quad \leftarrow \text{"vai-uns"}$$

$$\frac{100111}{1010010} \quad +$$

• Como somar números em outra base, p. ex., 2?

Ex.:
$$(101011)_2 + (100111)_2 = (1010010)_2$$
, ou seja, $(43)_{10} + (39)_{10} = (82)_{10}$
$$\frac{1 \quad 1111}{101011} \quad \leftarrow \text{"vai-uns"}$$

$$\frac{100111}{1010010} \quad +$$

Tabuada na base 2: bem mais simples!

• Como somar números em outra base, p. ex., 2?

Ex.:
$$(101011)_2 + (100111)_2 = (1010010)_2$$
, ou seja, $(43)_{10} + (39)_{10} = (82)_{10}$

Tabuada na base 2: bem mais simples!

Tabuada		7	TemVaiUm			Tak	TabuadaComVaiUm				VaiUmComVemUm			
	0	1			0	1		0	1			0	1	
0	0	1	_	0	0	0	0	1	0		0	0	1	
1	1	0		1	0	1	1	0	1		1	1	1	

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

		0	1	1		
	1	X	X	1 1	10	1
_		1	0	0	1	1
			1	1	1	0

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

- A B = C, A é o minuendo, B é o subtraendo
- Da direita para a esquerda, algarismo por algarismo
- Se o algarismo do minuendo é menor que o do subtraendo, "empresta" do algarismo à esquerda

$$= 11110$$

• Jeito fácil: usando complemento a 2

• Jeito fácil: usando complemento a 2

Ex.: 110001 - 10011

• Complemento a 1 de 10011 com 6 algarismos (maior quantidade de algarismos entre minuendo e subtraendo):

$$\underbrace{111111}_{6 \text{ uns}} -10011 = 101100$$

Jeito fácil: usando complemento a 2

Ex.: 110001 - 10011

• Complemento a 1 de 10011 com 6 algarismos (maior quantidade de algarismos entre minuendo e subtraendo):

$$\underbrace{111111}_{6 \text{ uns}} -10011 = 101100$$

Complemento a 1 de número binário: troca 1 por 0 e vice-versa

• Jeito fácil: usando complemento a 2

Ex.: 110001 - 10011

• Complemento a 1 de 10011 com 6 algarismos (maior quantidade de algarismos entre minuendo e subtraendo):

$$\underbrace{111111}_{6 \text{ uns}} -10011 = 101100$$

- Complemento a 1 de número binário: troca 1 por 0 e vice-versa
- Complemento a 2: é o complemento a 1, adicionado de 1 unidade:

$$111111 - 10011 + 1 = 101101$$

Jeito fácil: usando complemento a 2

Ex.: 110001 - 10011

• Complemento a 1 de 10011 com 6 algarismos (maior quantidade de algarismos entre minuendo e subtraendo):

$$\underbrace{111111}_{6 \text{ uns}} -10011 = 101100$$

- Complemento a 1 de número binário: troca 1 por 0 e vice-versa
- Complemento a 2: é o complemento a 1, adicionado de 1 unidade:

$$1111111 - 10011 + 1 = 101101$$

Denotaremos o complemento a 2 de um número B por

$$\overline{B} + 1$$

•
$$A - B = A + (\overline{B} + 1)$$
, desprezando o último "vai-um"

$$A = 110001, B = 10011$$

•
$$A - B = A + (\overline{B} + 1)$$
, desprezando o último "vai-um"

$$A = 110001, B = 10011$$

$$\overline{B} = 101100$$

•
$$A - B = A + (\overline{B} + 1)$$
, desprezando o último "vai-um"

$$A = 110001, B = 10011$$

$$\overline{B} = 101100, \ \overline{B} + 1 = 101101$$

•
$$A - B = A + (\overline{B} + 1)$$
, desprezando o último "vai-um"

$$A = 110001, B = 10011$$

$$\overline{B} = 101100, \ \overline{B} + 1 = 101101$$

Algoritmo da subtração

```
 \begin{split} \text{Subtração}(A[0\dots n-1],\ B[0\dots n-1]) \\ \overline{B} &\leftarrow \text{ComplementoAUm}(B) \\ \text{Um} &\leftarrow \text{Array}[0\dots n] \\ \text{Um}[0] &\leftarrow 1 \\ \text{ComplementoADois} &\leftarrow \text{Soma}(\overline{B}, \text{Um}) \\ \text{// descarta n+1-ésimo dígito criado para a soma } \\ \text{ComplementoADois} &\leftarrow \text{ComplementoADois}[0\dots n-1] \\ \text{C} &\leftarrow \text{Soma}(A,\ \text{ComplementoADois}) \\ \text{C} &\leftarrow \text{C}[0\dots n-1] \text{// descarta vai-um} \\ \text{RETORNE C} \end{split}
```

Algoritmo da subtração

```
Subtração (A[0...n-1], B[0...n-1])
     \overline{B} \leftarrow ComplementoAUm(B)
     Um \leftarrow Array[0...n]
     Um \lceil 0 \rceil \leftarrow 1
     ComplementoADois \leftarrow Soma(\overline{B},Um)
     // descarta n+1-ésimo dígito criado para a soma
     ComplementoADois \leftarrow ComplementoADois[0...n-1]
     C \leftarrow Soma(A, ComplementoADois)
     C \leftarrow C[0...n-1] // descarta vai-um
     RETORNE C
ComplementoAUm(B[0...n-1])
     \overline{B} \leftarrow Array[0...n-1]
     PARA i = 0...n-1 FAÇA
           SE B[i] = 0 ENTÃO \overline{B}[i] \leftarrow 1
           SE B[i] = 1 ENTÃO \overline{B}[i] \leftarrow 0
     RETORNE \overline{B}
```

• E se o minuendo for menor que o subtraendo?

$$A - B < 0$$
 se $A < B$

• E se o minuendo for menor que o subtraendo?

$$A - B < 0$$
 se $A < B$

• O algoritmo tradicional (usando empréstimos) não funciona! Não terá como fazer empréstimo para o algarismo mais à esquerda.

• E se o minuendo for menor que o subtraendo?

$$A - B < 0 \text{ se } A < B$$

- O algoritmo tradicional (usando empréstimos) não funciona! Não terá como fazer empréstimo para o algarismo mais à esquerda.
- Como efetuar a subtração? Pelo jeito tradicional, é necessário trocar a ordem das parcelas e colocar o sinal de menos à esquerda do resultado.

$$10011 - 110001 = -(110001 - 10011) = -11110$$

• E se o minuendo for menor que o subtraendo?

$$A - B < 0$$
 se $A < B$

- O algoritmo tradicional (usando empréstimos) não funciona! Não terá como fazer empréstimo para o algarismo mais à esquerda.
- Como efetuar a subtração? Pelo jeito tradicional, é necessário trocar a ordem das parcelas e colocar o sinal de menos à esquerda do resultado.

$$10011 - 110001 = -(110001 - 10011) = -11110$$

 Note o algoritmo tradicional falha se, e somente se, o minuendo for menor que o subtraendo. E se usarmos complemento a 2?

SUBTRAÇÃO BINÁRIA: NÚMEROS NEGATIVOS

Ex.: 10011 - 110001 usando complemento a 2.

$$A = 010011$$
, $B = 110001$

Ex.: 10011 - 110001 usando complemento a 2.

$$A = 010011, B = 110001$$

$$\overline{B}=$$
 001110, $\overline{B}+1=$ 001111

SUBTRAÇÃO BINÁRIA: NÚMEROS NEGATIVOS

Ex.: 10011 - 110001 usando complemento a 2.

$$A = 010011, B = 110001$$

$$\overline{B} = 001110, \ \overline{B} + 1 = 001111$$

$$A + (\overline{B} + 1) = 010011 + 001111 =$$

Ex.: 10011 - 110001 usando complemento a 2.

$$A = 010011$$
, $B = 110001$

$$\overline{B} = 001110, \ \overline{B} + 1 = 001111$$

$$A + (\overline{B} + 1) = 010011 + 001111 =$$

Não tem último vai-um!

SUBTRAÇÃO BINÁRIA: NÚMEROS NEGATIVOS

 Quando estivermos fazendo subtração com complemento a 2, se não houver o vai-um mais à esquerda – ou seja, se c_n não for um no algoritmo da soma – então o minuendo é menor que o subtraendo.

- Quando estivermos fazendo subtração com complemento a 2, se não houver o vai-um mais à esquerda – ou seja, se c_n não for um no algoritmo da soma – então o minuendo é menor que o subtraendo.
- Observe que o resultado da operação, à primeira vista, não faz sentido:

$$A = 010011, B = 110001$$

$$A + (\overline{B} + 1) = 010011 + 001111 = 100010 \neq A - B = -11110$$

- Quando estivermos fazendo subtração com complemento a 2, se não houver o vai-um mais à esquerda ou seja, se c_n não for um no algoritmo da soma então o minuendo é menor que o subtraendo.
- Observe que o resultado da operação, à primeira vista, não faz sentido:

$$A = 010011, B = 110001$$

$$A + (\overline{B} + 1) = 010011 + 001111 = 100010 \neq A - B = -11110$$

Mas, calculando o complemento a 2 do resultado:

$$\overline{100010} + 1 = 011101 + 1 = 011110 \; \text{(mágica?)}$$

SUBTRAÇÃO BINÁRIA: NÚMEROS NEGATIVOS

- Quando estivermos fazendo subtração com complemento a 2, se não houver o vai-um mais à esquerda – ou seja, se c_n não for um no algoritmo da soma – então o minuendo é menor que o subtraendo.
- Observe que o resultado da operação, à primeira vista, não faz sentido:

$$A = 010011, B = 110001$$

$$A + (\overline{B} + 1) = 010011 + 001111 = 100010 \neq A - B = -11110$$

 Mas, calculando o complemento a 2 do resultado: $\overline{100010} + 1 = 011101 + 1 = 011110$ (mágica?)

Para casa: Para a soma binária, prove que no caso $A = 0a_{n-2} \dots a_0$ e $B = 0b_{n-2} \dots b_0$, onde A < B, então:

- (1) o resultado da soma $A + (\overline{B} + 1)$ não tem vai-um c_n ;
- (2) $A + (\overline{B} + 1) + 1 = B A$.

Altere o algoritmo da subtração usando complemento a 2 para funcionar com diferenças negativas (escreva pseudocódigo).

Para casa

• Acessar o site http://compscinet.org/circuitos e ler as informações sobre o curso com cuidado

Para casa

- Acessar o site http://compscinet.org/circuitos e ler as informações sobre o curso com cuidado
- Obter o livro: Thomas Floyd. Sistemas Digitais: Fundamentos e Aplicações, 9ed. Editora Bookman, 2007.

Para casa

- Acessar o site http://compscinet.org/circuitos e ler as informações sobre o curso com cuidado
- Obter o livro: Thomas Floyd. Sistemas Digitais: Fundamentos e Aplicações, 9ed. Editora Bookman. 2007.
- Leitura recomendada: Floyd, seções 2-1 a 2-6 (menos a parte de números em ponto flutuante), 2-7, 2-8.
- Exercícios recomendados: autoteste 1 a 16, problemas de 1 a 40 (exceto 27 e 28)